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Adaptive Linearly Constrained Inverse QRD-RLS
Beamforming Algorithm for Moving
Jammers Suppression

Shiunn-Jang Chern and Chung-Yao Chang

Abstract—in this paper, a general, linearly constrained (LC) re- the narrowband array structure. In this paper, the narrowband
cursive least squares (RLS) array-beamforming algorithm, based array structure is considered for moving jammers suppression.
on an inverse QR decomposition, is developed for suppressing The linearly constrained minimum-variance (LCMV) beam-
the moving jammers, efficiently. In fact, by using the inverse QR f . idered to b f th | h
decomposition-recursive least squares (QRD-RLS) algorithm ormer.is COOS' ered to e_one_o the most popular approaches
approach, the lease-squares (LS) weight vector can be computedfor suppressing the undesired interference [5], [6]. The Frost's
without back substitution and is suitable to be implemented using beamforming algorithm [1], can be viewed as an adaptive

the systolic array to achieve fast convergence and good numerical implementation of the LCMV beamformer. However, under
properties. The merits of this new constrained algorithm is verified certain circumstances, the conventional Frost's beamforming

by evaluating the performance, in terms of the learning curve, lgorith h bl iated with th
to investigate the convergence property and numerical efficiency, algorthm may have some problem associated wi e per-

and the output signal to interference and noise ratio. We show that formance degradation in multiple jammers environment. To
our proposed algorithm outperforms the conventional linearly circumvent this drawback, in [3] the adaptive transformed do-
constrained LMS (LCLMS) algorithm, and the one using the fast main normalized LMS algorithm with discrete cosine transform
linear constrained RLS algorithm and its modified version. (DCT) and discrete Harley transform (DHT) for broadband
Index Terms—Adaptive beamformer, interference and noise adaptive array structure were proposed to improve the nulling
ratio, inverse QRD-RLS algorithm, linearly constrained (LC),  capability as well as convergence speed. Also, in [4] the lin-
;T;/Z\t/cl)rl]i?: éa:ggwers, signal-to-interference-and-noise-ratio (SINR), garly constrained robust fast least square (FLS) beamforming
' algorithm was suggested to achieve better performance for
broadband beamformer.
I. INTRODUCTION It is known that, in general, the recursive least squares
ANY adaptive array beamforming algorithms, based OQQLS) algorithm offers better convergence rate,. steady—st'a.te
linearly constraints, have been proposed for suppressi ans-square error (MSE), and parameter tracking capa}blllty
’er the adaptive leaset mean square (LMS) based algorithm .

undesired interference [1]-[4]. Moreover, these constrained the wid d ; ¢RLS filters has b - ded
proaches can be applied to wireless communication systems G the wi espread acceptance otRL> TIErs has been impede
a sometime unacceptable numerical performance in limited

multiuser detection [19]. An array beamformer is a process . . . A :

used in conjunction with an array of sensors to provide a vdprecision enV|.r0nments. This de_gradatlon c.)f performanpe 1S
satile form of spatial filtering. The sensor array collects sp _speC|aIIy“not|,c’:eabIe.for the family of technlques' collectively
tial samples of propagation wave fields, which are processed )pwn as “fast’ RLS f||'_[ers [71-9]. To overcome this pro_b 'e"_"

the beamformer. In case that the desired signal and interferfh well known numenca_l .stable RLS algorithm, Wh'Ch IS

signal occupy the same temporal frequency band, the convé lled the -QR—decomposmon RLS (QRD'.RLS) algorithm was
tional temporal filtering approach cannot be used to separ (onsed n [5], [10], qnd [11]. BaS|ca}IIy, 't. cc_)mputes the QR
signal from interference. In fact, the desired signal and jamm composition of the input data matrix usi@@vens rotation

usually originate from different spatial locations. This spatié\nd solving the L5 weight vector by the back substitution. This,

separation can be exploited to separate signals from interfereﬁbg'm’tciusels thebr;um?rlcsl dyr(;amlcc:j re;r;ge c_)I Lhe t:ﬁnsgormtf-:_-;j
using a spatial filtering at the receiver. Such that, the adapti%fmp.u at|rc])na grg en; o bere huce t'h t;o, ;h ast t('a ebne : q
array system can be employed to automatically adjust its dirég-Using the QR- ased approaches, that Is, the rotation-base

tional response to null the interferences or jammers and th g'mputatlons are easily mappeq onto systolic array structures
enhances the reception of the desired signal. They are two ty| fHsa parallel implementation with VLS| technology [5], [9].

of adaptive array structuregz., broadband array structure an owever, in some practical applications if the least-squares
’ (LS) weight vector is desired in each of iteration then back

substitution steps must be performed accordingly . Due to the
Manuscript received August 31, 2000; revised April 12, 2001. This Wor.t{"‘Ct that back SUbSt_|tUt'0n 1S a COStIy operation to be perf_ormed
was supported by the National Science Council, Taiwan, under Contract NBT array structure, in such circumstance the so-called inverse

89-2213-£-110-055. _ - , RD-RLS (IQRD-RLS) [12], [13] algorithm was proposed,
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Fig. 1. Configuration of linearly constrained adaptive-array beamformer.

In this paper, a general linearly constrained adaptive beam-To start our derivation, let us consider a uniformly linear array
former based on the inverse IQRD-RLS algorithm is develop€dLA) and a wavefront, generated by a desired source of wave-
with an adaptive narrowband array structure. It is notice that thegth A, propagating in aiv element array of sensors from a
proposed IQRD-RLS beamforming algorithm can be viewed dgrection 8, off the array boresight. Now, taking the first ele-

a general formulation or the extension of the one discussednirent in the array as the phase reference and with equal array
[17], and is discussed in Appendix B as a reference. The diffeapacingd, the relative phase shift of the received signal at the
ence of the IQRD-RLS algorithm from the FLS algorithm [4j:th element can be expressed as

is that the adaptation gain or Kalman gain is evaluated using 9

Givens rotation(QR decomposition) [12], [13]. This results in Do = _Wd(n — 1) sin 6y (1)
having better numerical accuracy and stable steady-state MSE A

and better capability to null multiple undesired interferencedoreover, we assume that the spacing between array elements
than the RLS or FLS algorithm. In this paper, we will first deis set to be\/2, the array response vector of thié-antenna

rive the adaptive linearly constrained IQRD-RLS beamformingLA can be denoted by
algorithm and discuss its rationale. After that, computer simu- o

lation is carried out to verify the robustness of the method pre-  a(6x) = [1,e /™=

sented with respect to the moving jammers suppression capa- o )
bility. hus, we choosé;, toward the direction of arrival (DOA) of

desired source signal and suitably adjust the weights of adaptive

array; the array will pass the desired source signal from direction
Il. LINEARLY CONSTRAINED INVERSE QRD-RLS 8, and steer nulls toward interference sources locatégl,dor
BEAMFORMER k # 0. It can be shown that aiv-element array ha®y — 1

In this section, the optimal LS solution of the linearly Congegrees of freedom giving up &' — 1 independent pattern

strained beamformer, based on the IQRD-RLS algorithm [1§ulls. So it has better performance if the array has more antenna

7 eij(Nfl)ﬂ' sin(gk)]H_ (2)

[13] is derived with narrowband array structure. Also, its ada fements.

tive implementation algorithm is developed and discussed Igﬁ The Optimal Solution of the LC-IQRD-RLS Beamformer
what follows. First, we will review the formulation of antenna™"

array. It is known that the principle of a LCMV beamformer
[5] is to minimize the powers of background noise and the
interference at the linear-array output, while maintaining
a chosen frequency response in the look direction. The
The basic operation of the adaptive antenna array is usualiyctor of sampled signals at the time indexs denoted by

A. Formulation of Antenna Array

described in terms of a receiving system steering a null, thatjg(,n) = [z1(n), za(n), ..., zx(n)]¥ and the corresponding
a reduction in sensitivity in a certain position, toward a Sourgctor of the weights appearing at each tap is designated as
ofinterference. It consists of a number of antenna elements coirn) = [, (n), hao(n), ..., ha(n)]7. Where the superscrigf

pled together via some form of amplitude control and phaggdenoted as the Hermitian operation aWds the number of

shifting network to form a single output. The amplitude angrray elements. The output signal is given by
phase control can be regarded as a set of complex weights, as

illustrated in Fig. 1. y(n) = h'(n)x(n). (3)
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In the method of exponentially weighted least square, we chodSe Recursive Implementation of LC-IQRD-RLS Algorithm

the weights at time:, so as to minimize the cost function that To derive the recursive equation of (9), we define a RewN
consists of the sum of weighted output power matrix S(n) ’

n ) n ] ") = 1 n _u "
£m) = w T y@F = 3w T )x@)P @) S(n) =R (n)R™"(n) (10)

and its inverse matrix to be
where parameterw (0 < w < 1), is an exponential

weighting factor or forgetting factor that controls the S~'(n) = R"(n)R(n). (11)
speed of convergence and tracking capability of the al-

gorithm. For convenience, let us denotenax N data |nfact, it can be easily shown that mat8x!(n) is equivalent

matrix, in terms of snapshot(1),x(2),x(3),..., which to the following definition:

is defined by X(n) = [x(1),x(2),...,x(n)]*, with

x(1) = [x1(2),22(0),...,2zx(®)]*. In consequence, we n

may rewrite (4) in a matrix form S (n) = XH(m)A(n)X(n) =Y w'x"(i)x" (i). (12)

2
_|[arr2
¢n) = HA (”)X(”)h(”)H ) ®) Also, following the terminology in the Kalman filtering, matrix

S—1(n) is referred to as a “correlation matrix” of the exponen-
Also, A/%(n) = diag [\/wn—l, Vw2 Jw, 11‘ is a diag- tial weighted sensor outputs averaged ovenapshots, while its
onal matrix. In the linearly constraint problem, the constraintgverse is denoted b§(n) = X! (n)A~!(n)X " (n) when-

of the weights are introduced by a linear system ever it exists. For convenience, we defing:) = S(n)C and
®(n) = C"T'(n) = CYS(n)C, in consequence, (9) can be
C"h(n) = f. (6) expressed as
_ —1
In (6), C = [c1, ¢a,...,cKk] isalN x K constraint matrix, con- h(n) =1(n)&~" (n)f. (13)
structed by array steering vectots,= [c;1, ci2, - - -, ¢;v]H, and

e Here (13) can be viewed as the LCMV beamformer based on
f=[f1,f2,-.., fi]" istheK-elementresponse column vectonha inverse QR decomposition.

Therefore, the constrained optimization problem becomes 10, what follows, a recursive implementation of (13) will be

minimize the cost function defined in (5), subject to the CONjerived based on thaverse Cholesky factdR ~!(n). In fact
straints defined in (6). in (13) bothl'(n) and®~*(n) are related to theverse Cholesky

Itis known thqt in th? conventional QRD'RL_S algorithm, a5 ctor, some of the useful parameters and alternative recursive
orthogonal matriXQ(n) is employed to do the triangular factor-rms of I'(n) and®(n) are derived and discussed in Ap-

o > St . .
ization of the data matrix\'/?(n)X(n), by Givens rotation  nondiv A First, we recall from (A-1YI(n) is an unitary ma-

trix, which is used for updating the Cholesky fackfn — 1) to
Q(n)AY2(n)X(n) = {Ré”) } (7) R(n),andcan be shownto be equivalenPtn), whereP(n) is

an orthogonal matrix used to upd®e*(n) fromR~1(n — 1)
: . ) . [see (A9)]. The key point is to derive a recursive formulation
whereR(n) is anN' x N upper triangular matrix, an@ is the - ¢, iglementing (13), and the parameters involved in the re-

(n—N) x N null matrix. Since orthogonal matrix is length Preursive equation should be related to the scalar paranietgr,

serving, using the result of (7), the cost function can be rewritt%rr'l]d vectog(n) (defined in (A6) and (A7), respectively) while
as updating theénverse Cholesky fact® ~!(n) fromR~!(n—1).
5 To simplify matters, we define the auxiliary matrix
¢h(n)] = [[[R(n)h(n)]| ®)
where||(e)|| denoted the Euclidean norm @f). Now, the con- A(n) =R "(n)C (14)
strained optimization problem becomes to minimize (8), subject
to the constraints defined in (6). Consequently, proceed in asigd the row vectorv(n) = g (n)C, such that®(n) =
ilar way as in [14], we may derive the constrained optimal seA” (n)A(n) andI'(n) = R~ (n)A(n), respected. From the
lution of the LS weight vector, via Lagrange multiplier methodlefinition of A(n), it follows that
based on théQRD-RLSnotation, that is

. Af(n—1DR(n-1)=C" = A¥(n)R(n). (15)
h@):[RﬁooRom‘lc{cH[RﬁooRom‘lc} f
(9) Inconsequence, we may have the following related equation:
Based on (9), in Section II-C, the recursive implementation
of the optimum linearly constrained LS solution, using the A(n)
IQRD-RLS algorithms, can be developed. [ }

L

:mm[ﬁ ?‘”l (16)
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By definition and using (A8)I'(n) and®(n) can be expressed TABLE |
in recursive forms SUMMARY OF THE ADAPTIVE LC-IQRD-RLS BEAMFORMING ALGORITHM

I'(n) —R! (n)A(n) = R-! (n)RfH(n)C ® [Initialization R™(0)=6""I, & =small positive constant
1 ') =R (OR(0)C
= [—Rl(n -DR (n-1)- g(n)gH(n)} C h(0) =T (O[CTO) "'t
1_111 ® Forn=1.2,...,do
=w™ [(n = 1) — g(n)a(n) 17 1. Compute the intermediate vector z(n)

R (n-Dx(n
and 2(n)= (n=Dx(n)
2. Evaluate the rotations that define P(n) which annihilates vector
z(n)and compute the scalar variable #(n)

d(n) =A"(n)A(n) = CER ()R H(n)C

_cH [lR_l(n DR (n—1) - g(n)gH(n)} C P(n)[z(”)H 0 ]
w 1| ()
wal‘I)(n -1) - CYH(R)CY(R) (18) 3. Update the lower triangular matrix R (1) and compute the

vector g(n) and a(n)=g” (n)C

wl R (n - 1)] ~ [R‘H (n):|

or with y(n) = y/wa!(n), we have
P(n){ of

H
®(n) = w[(n - 1) vy (m)].  (19) g
® Update following equations and intermediate inverse matrix:
Applying the inversion matrix lemma to (19), we have the re C(n)=w'T(n—1)—gma(n)
cursive equation of matrig~*(n) o™ (n-Da” ()

A = e (-Da” ()

&~ (n) = w[l + Vwg(n)a(n)]® (n —1) (20)
@ (1) = il +Vwa(ma@]®™ (n-1)
whereq(n) is defined by ® Updating the LS weight vector:
h(rn)=h(r-1) - p(n)e(n,n-1)
oy — VB0~ o () - i AR
A= wa(n)®1(n — Do (n)

pn)=k(n)- %F(n)q(n)
It should be noted that, by definition of (1&)(»), e.g.,®(n) = e(mn—1)=x" (Wh(1—1)
A" (n)A(n), and in consequence @~1(n) defined in (20), ’
both are in @quare rooform, and is well known that it will be in
the absence of process noise by using2helesky factorizatan gnd

Also, based on (20) and (21) we can show

e(n,n —1) =x"(n)h(n - 1). (25)

o —1/2rg—1 H
q(n) = w7 [@7 (n)a” (n)]- @2) (25), e(n,n — 1) can be viewed as tha priori output of

) . o . beamformer. This completes our derivation for the adaptive
Here, (22) is useful for deriving the recursive implementation %early constrained inverse QRD-RLS beamforming algo-
(13)_- ) ) ] ) rithm. For convenience, a complete procedure of implementing
Finally, to apply the recursive equations defined in (17) angle linearly constrained inverse QRD-RLS (LC-IQRD-RLS)
(20)~(13) and after some simplification, we have the recursig, orithm is summarized in Table I, as reference. It should be
implementation of (13) or the adaptive Iinearly constr_ained iMoted that in Table I, the adaptation g&ifn), and the auxiliary
verse QRD-RLS (LC-IQRD-RLS) beamforming algorithm  yector,o(n), are related to vectgs(n) and scalar variablr),
which are obtained while we compute thverse Cholesky
h(n) =h(n — 1) — wlg(n) — vwl'(n)q(n)] factor R~!(n) from R~!(n — 1) via Givens rotation
xa(n)® 1(n—1f. (23a) Since it is known that the QR decomposition or the inverse
QR decomposition vi&ivens rotatiorhas more robust stability

Moreover, with the definition of (A5) and (A7), (23a) can becharacteristics, therefore, we can expect that the proposed algo-

further simplified rithm will have better numerical stability and accuracy as com-
paring with the conventional fast RLS family. Moreover, for im-
h(n) =h(n — 1) — p(n)e(n,n — 1) (23b) Plementation in Table I the initial value @& ~1(0) is propor-
tional toé—*, and from [5] the value of should be chosen suit-
with ably small compared t0.0102, whereo? is the average power

of input data. In our case, in general, the input data will be higher
I 24 correlated when the jammers are more closely located. In such
t(n) (n)a(n) (24) " cases the value @fhas to be chosen slightly larger than the one
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Fig. 2. Systolic array for inverse updating beamforming algorithm. t
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suggested in [5]. However, for sufficient large data lengths, the h h=h-pe
exact value ob will be less significant.

Fig. 3. Processing cells required for the inverse updating the beamforming
array.

[ll. THE SysTOLIC ARRAY IMPLEMENTATION OF . . _ . .
LC-IQRD-RLS ALGORITHM Basically, this array is made up of three sections: The trian-

gular array in the right-upper part in Fig. 2 stores and updates

In the conventional RLS algorithm, calculation of Kalmanhe inverse Cholesky factor. Each element of the triangular part
gain required the inversion of the correlation matrix of inpusf the array has an associated internal stgtewvhich is equiva-
vectorx(n). If the data matrix is in ill condition, or in the worst lent to the corresponding element of the inverse Cholesky factor
case has a rank less than the number of the weight vector @&+ ). And the square cells in the left-upper part generate the ro-
ments, i.e./V, the conventional RLS algorithm will rapidly be-tation parameters. Finally, the row in the lower part updates the
come numerically unstable as the inversion of correlation miatermediate parameters and computes the weight vector. The
trix becomes impossible. Moreover, it still has a shortcomingystolic array has a latency 8f, symbol periods arises from the
namely, they generally do not lend themselves to efficient hanédquirement to clock the data through the processing elements,
ware implementation. but provided the model order is not too high, the delay can be

It is well known that the QR decomposition has the advamelerated in this application. It is noted that division operator,
tages of parallel execution and the computational power certhe pipelined implementing of the proposed algorithm devel-
be reached by connecting general purposed digital signal poped in this paper, is avoided. All the intermediate parameters
cessing (DSP) device. As described earlier, using the QRD-RBS8d inverse matrix have their corresponding recursive form.
approach, the optimal weight vector is obtained via back sub-An advantage of the systolic array over than other architec-
stitution. Unfortunately, pipelining of the two steps (triangulatures is that the individual processing element computational
update and back substitution) on a triangular array seems ioomplexity does not grow with increasing ord€t The larger
possible because of its opposite executive direction. Howevilter orders of implementation proposed in this paper, which
as depicted in Fig. 2, using the inverse QRD-RLS based methedusing systolic array, can be accommodated than with con-
proposed in this paper, this disadvantage can be avoided. It temporary algorithms such as the standard RLS algorithm has a
be mapped onto the systolic array structures for a parallel imemputational complexity o®(N?). Whenever multiple con-
plementation with VLSI technology. As illustrated in Fig. 2straints with steering vectors are considered, it is sufficient to
each processing cell, used for inverse updating the beamformieglicate the row in the lower part to update the weight vector.
array, comprises three types of cells, whose functions are @»nversely, only one triangular array is required irrespective of
scribed in Fig. 3. the number of look directions. Also, by using the systolic array

Authorized licensed use limited to: Tamkang Univ.. Downloaded on March 28,2023 at 03:21:12 UTC from IEEE Xplore. Restrictions apply.



CHERN AND CHANG: ADAPTIVE LC INVERSE QRD-RLS BEAMFORMING ALGORITHM 1143

Power Spectrum
120 T T ‘ : T y

100 - i
80 7
60 i

40 i 1

Power (dB)

20 \ ]

(o] 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalized Frequency (Hz)

Fig. 4. Power spectrum of look direction desired signal.

structure described in Figs. 2 and 3, the adaptive LC-IQRD-RLS TABLE I
beamforming algorithm can be implemented in real-time appli- THE VALUES OF STEP SIZE FOR VARIED JPR
cation, efficiently. JPR Upper borurnrdiof ‘ i ’ 4 is chosen
IV. COMPUTER SIMULATION RESULTS _ Casel 1 3.1726x107° 1.5863x107
In this section, computer simulations are carried out to val- Case2 100 47591107 23795107

date and investigate the performance of the presented method.

We assume that the received signal in each sensor consists §@ of values of the step size are listed in Table Il for computer
desired source signal buried in white Gaussian noise and theggylation.
directional interferences (or jammers) incident at angle$, To investigate the performance of the presented method, first,
andfs, respectively. For convenience, the look direction of thge will examine the capability of interference rejection and
desired source signal is chosen tofbe: 0°. Also, the desired the results are compared with the conventional Frost's linear
source signal is generated using the AR(2) model, thatis  constrained least mean square (LCLMS) beamforming algo-
(26) rithm and the one discussed in [4], using the linearly constrained
fast LS (LCFLS) and robust FLS (LCRFLS) beamforming al-
Here the coefficients of AR(2) model are set to begorithms. In general, since the averaged power of jammer is
a; = -—19114, o = 0.95 and the variance of white much larger than the desired source signal, the SNR is set to
process(n) is chosen to be? = 0.0038 to have unit variance 0 dB. In the first case, three jammers with equal power, e.g.,
of desired source signai(n), e.g.,c2 = 1. The power spec- JNR; = JNR, = JNR3 = 30 dB, and incident angels;25°,
trum of desired source signal, from look direction, is illustrated5°, and 50, are considered. The results, in terms of nulling
in Fig. 4. capability, are given in Fig. 5 for different methods with 200
Next, in the following simulations, we assume that the linedterations, which is the average of 500 independent runs. As
array has seven sensdr§ = 7) and the analog frequencies ofobserved from Fig. 5, the presented method performs superior
corresponding jammers are chosen to be 600, 700, and 800 tdzthe LCFLS and the LCRFLS algorithms, and much better
also, the sampling frequency is set to be 2000 Hz. The corthan the conventional Frost’s algorithm. In the second case, for
sponding incident angles of these three jammers-&%, 45°, JNR; = 10 dB, andJNR, = JNR3 = 40 dB, similar results
and 50. For further discussion, we defid®&R;, JNR,, JNR3 are observed in Fig. 6. Also, for comparison, the results of these
as the corresponding jammer-to-noise ratios and assume that cases are listed in Table 111
JNR; < JNR; = INRg. To see the effect due to eigenvalue As observed from Table Ill, the performance using the
spread two sets of jammer’s power ratio (JPR), e.g., the ratio laelaptive LCLMS beamforming algorithm is affected by the
tweenJNR, andJNR,(= JNRj3), thatis,JNR = 1 and 100, eigenvalue spread as in case 2, and the performance becomes
are considered. worse, while the other algorithms perform quite well. As indi-
Since in the adaptive LCLMS beamforming algorithm (or theated in [4], in this case, the adaptive LCRFLS beamforming
Frost’s algorithm) the upper bound of the step-size to asswagorithm has 2—8 dB improvement over the adaptive LCFLS
the convergence &/37r[R,.]. For convenience, the step sizédbeamforming algorithm, due to the effect of introducing a
with one-half of the upper bound is selected, and two speciftorrection term. Although, both adaptive LCFLS and LCRFLS

u(n) + aru(n — 1) + agu(n — 1) = v(n).
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Fig. 5. Beam patterns of case 1 with different algorithms after 200 iterations (500 runs).

g g
£ £
3 3
& &
< <
-50 0 50
ob---- - - -]
g § 20 - -
£ £ : | :
8 (‘B '40 ””” [ I f S |
z » : :
- S i A |
80 -~ ARER AR B
-50 0 50 -50 0 50
Azimuth Angle (degree) Azimuth Angle (degree)

Fig. 6. Beam patterns of case 2 with different algorithms after 200 iterations (500 runs).

beamforming algorithms introduced reasonable deep nulentium | 166 MMX (with 32 MB) is employed, the adaptive

in the incident angels of 45and 50. For smaller power LCFLS algorithm will diverge as indicated in [14].

jammer incident from—25°, 20 dB and 13 dB decays are Next, we would like to examine the convergence property and
observed, compared with case 1, for the adaptive LCFLS ati@ numerical stability of the presented method. To see the con-
LCRFLS algorithms, respectively. However, in these two casegrgence property, in terms of learning curves, case 2 is consid-
the presented method performs quite well and quite closedred, and the results are given in Fig. 7, where the minimal MSE
the results of MVDR. Therefore, we may conclude that this given by.J,,,;;, = 0.956 = 1 (0 dB). From Fig. 7, we learn that
adaptive LC-IQRD algorithm, proposed in this paper, has tltee adaptive LCLMS algorithm converges slowly approaching
best nulling capability for rejecting jammers and separatinthe minimal MSE after 3000 iterations. Although both the adap-
adjacent jammers compared to the others. It is of interesteditee LCFLS and LCRFLS algorithms could converge faster, they
point out that the results described above are obtained usingwik diverge after 1500 and 2000 iterations, respectively, due to
Pentium Il 550 MHz (with 256-MB RAM). However, if PC of the instability of updating the Kalman gain during adaptation
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TABLE Il
COMPARISON OFNULLING CAPABILITY FOR DIFFERENT METHODS
Jammer’s | Jammer’s
LCLMS LCFLS | LCRFLS | LCIQRD | MVDR
angles power
250 30dB |-35.39dB|-61.89dB |-62.44 dB|-77.03 dB | -82.02dB
Casel 45° 30dB |-47.16dB |-63.42 dB |-63.81 dB|-71.74 dB | -81.80 dB
50° 30dB |-53.55dB|-65.01 dB|-69.45dB|-76.92 dB |-83.24 dB
250 10dB |-12.59dB |-41.97 dB | -49.44 dB | -67.86 dB | -72.91 dB
Case2 45° 40dB |-39.81dB|-71.76 dB |-75.43 dB | -76.18 dB | -84.26 dB
50° 40dB |-39.07dB|-75.55dB |-76.27 dB | -86.19 dB | -88.57 dB
LCLMS LCFLS
10? 10°
1 L
g g
10° 10°
0 1000 2000 3000 0 1000 2000 3000
iteration iteration
CRFL CIQR
107 107
[H) [H)
g g
10° 10°
0 1000 2000 3000 0 1000 2000 3000

iteration iteration

Fig. 7. Learning curves for case 2 after 3000 iterations (using 500 runs).
processes. However, by using the adaptive LC-IQRD algorithm,First, let us examine the results shown in Fig. 8, with the pa-
proposed in this paper, fast convergence and better numeri@aheters as in case 1 except that SNRO dB, when the jam-
stability can be achieved. mers are still. From Fig. 8, we learn that the proposed adap-
Finally, it is of interest to investigate the tracking capabilityive LC-IQRD algorithm outperforms the adaptive LCLMS al-
due to moving jammers. To do so, we consider the case wibrithm and the one using the LC-FLS algorithm and its mod-
three moving jammers, which may occur in wireless commurified version, e.g., the LC-RFLS algorithm. As expected, both
cation environment, with their azimuthal trajectories being dedaptive LC-RFLS and LC-IQRD algorithms could converge to

noted by the optimal output SINR, e.g., 19.93 dB, faster. However, it di-
o o o o verges after long-term adaptation due to the instability as indi-
bi(n) == 25" = 0.1, f2(n) = 50° — 0.05°n cated in Fig. 7. While the LC-LMS algorithm may not be able
f3(n) =45° — 0.01°n (27)  to approach the desired value, after 200 snapshots, it could only

wheren is the snapshot time index. To be more specific, tH%Ch'eve its best SINR value at about 16.5 dB.

value of output signal to interference and noise ratio (SINR) canNeXt’ for the case of moving jammers, we .SEt the param-
be evaluated based on the following definition: [5] eters to be the same as in case 1, and in this case, we have

the desired outpuBINR,:(n) to be —5.57 dB. As shown
_ PJnf(n)sf? in Fig. 9, the conventional adaptive LCLMS algorithm (or
~ h#(n)Riy(n)h(n)

Frost’s algorithm) could not track the moving jammers, prop-
whereP; is the averaged power of target sigrnalk the steering

erly. In consequence, the performance of LCLMS algorithm
vector in the constrained mati, andRin(n) is the covariance will degrade significantly because of its slow tracking capa-
matrix of interferences (jammers) and noise. Also, the optim

%illity. Therefore, we may conclude that the presented method,
SINR is defined by [5] with the LCIQRD algorithm, is more robust than the existing
SINRout_optimal(n) = pSSHRi;l (H)S

SINR,ut(n) (28)

methods, particularly, when real time implementation is re-
(29) quired at high data bandwidths.
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Optimal output SINR (dB) =19.93
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Fig. 8. The output SINR for case 1 with stationary jammers.

Optimal output SINR (dB) = -5.5723
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Fig. 9. The output SINR with case 1 for moving jammers.

For convenience, in Table IV the comparison of the praan be evaluated using a conventional RLS procedure with a
posed algorithm with the conventional Frost's algorithm ancbmplexity proportional tagv?2. Since in our proposed method,
the FLS and robust FLS algorithms [4], in terms of nhumericghe QR decomposition is employed and is very efficient for
stability and computation efficiency, are given. It is knowrvaluating the Kalman gain and the related parameters. Thus,
that the family of the “fast ” least squares has serious nwith similar complexity as the LCFLS algorithm, the proposed
merical instability in limited precision environment, and hamethod has better numerical stability.
time shifting relationship between the tapped-delay line below
each sensor of beamformer. But this is not the case when
narrowband beamformer structure is employed. The sensor
output is simply weighted and summed to compute the arrayln this paper, a generalized adaptive linearly constrained
output. Consequently, it will reduce the computational conbeamformer based on the inverse QRD-RLS algorithm has
plexity, significantly. In this case, the Kalman gain of FLSeen derived. In fact, it can be viewed as an extention of the

V. CONCLUSION
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TABLE IV
COMPARISON OFFOUR CONSTRAINED ALGORITHMS IN NARROWBAND BEAMFORMER
Algorithms LCLMS LCFLS LCRFLS LCIQRD
Converge rate Slow Fast Fast Fast
] (data correlation)
Steady state Large Middle Small Small
(MSE) (data correlation) | (round off error) | (correcting term)
Numerical Stable Unstable Unstable Stable
stability (RLS algorithm) | (RLS algorithm) |  (orthogonal
transformation)
TABLE V
COMPLEXITIES COMPARISON OFFOUR ALGORITHMS IN DIFFERENT UPDATE PROCEDURES
Mo (Foln Inrosde oo || UELS | gt compeiy
LoLms 1MUL N?+2N+1
ADD N2 +2N -1
LOFLS MUL | 6N Q@N+2K* +(6N+DK |NK+(BN+1D) |RN+2)K*+(IN+D)K+(ON+1)
ADD 2NK* +(SN-5)K NK+(@2N-1) |2NK*+(6N-5K+(2N-1)
LCRELS MUL (6N GN+DK*+(BN+DK  |2NK+2N GN+DK* +(5N+1K +8N
ADD SNKX +(N-DK 2NK+(2N-1) [5NK*+(@BN-DK+@2N-1)
LCIORD MUL {6N QN+2K*+Q2N+2)K+1 |NK+(2N+1) |2N+2)K*+(3N +2)K +(8N+2)
ADD INKE—K+1 NK+(@2N-1) [2NK*+(N-DK+2N

TABLE VI
EXPENSE OF THEEXISTING ALGORITHMS COMPARED WITH
THE LC-IQRD-RLS ALGORITHM (100%)

one developed in [17] (see Appendix B). To document the
advantage of our proposed method the performance comp&RVPUTATIONAL
ison of the learning curves and nulling capability for different

met_hods are evaluated. The computer results have verified t Algorithm N=7. K=1 (MUL) Compare with LCIQRD
merit of the proposed method. As observed from the resuli

shown in Section 1V, the proposed method could be used 1 LCLMS 64 65.98 %
achieve the desired value of SINR and having better trackin ~ LCFLS 130 134.02 %
capability as compared to the conventional LMS and fas LCRFLS 128 131.96 %

RLS algorithms. Also, the performance, in terms of numerica 1 ciQrD 97 100.00 %

stability and computation efficiency, has been shown to be su-
perior to other conventional algorithms. Moreover, by using the _ _
systolic array structures described in Figs. 2 and 3, the adaptive © S€€ the merits of the LC-IQRD-RLS algorithm, the com-
LC-IQRD-RLS beamforming algorithm can be implementeH“tat'onal expense is calculated. The complexities in terms of
in real time application, efficiently. Thus, we concluded th(,s{pultiplication land addition operators in each_stage of the rela-
the overall performance, in terms of computation efficiencylve four algorithms are compared. Complexities of three stages
convergence property, and nulling capability of the presentaff concerned, which included the Kalman gain stage, the inter-
method, did perform over the linearly constrained FLS and iféediate constrained matrix updating stage, and the updating LS
modified version. weights vector stage. For convenience, the number of multipli-
Moreover, as discussed in [16], the direct QR algorithm méfxtion and addition operators in each stage and overall complex-
suffer the accumulative round off error to give rise to numeric S c;f fotl:]r aIgonthrt'n? are listed in T;E'Eﬁ Als(,jokto_bt; more
problems and the simple back substitution ne@da'2) oper- Speciiic, the computation expense with = 7 an =15

ations. On the other hand, it has been shown that in the invep%\éen in Table V1. From Table V1, we learn that the proposed

QRD-RLS algorithm, the recursive updating of the triangulfrgqrithm Is more computatipnal efficient than otherexisting al-
matrix requires onlyO(N) operations. In [18], a detail Cc)m_gonthms, except the one using the LCLMS algorithm proposed

parison of implementing the associated intermediate cells of ﬁ)y Frost [1].
verse QRD-RLS algorithm and the fast RLS algorithm is given.
Consequently, we can conclude that the inverse QRD algorithm

has the advantages of numerical stability and complexities tharin this appendix, some of the equations during the access of
the QRD algorithm. updating the inverse Cholesky factor in the inverse QRD-RLS

APPENDIX A
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algorithm that are very useful for deriving the linearly conk should be noted that bo#(») and¢(n) are computed, using
strained inverse QRD-RLS beamforming algorithm, ardeGivens rotatiopnwhenR ! (n)is updated frorR~*(n—1).
discussed. From [12], we know that the upper triangular matioreover, itis of interest to point out that the vectgn) scaled
R(n) can be updated in a recursive form by t(n) can be viewed as the adaptation or Kalman gain of the

inverse QRD-RLS algorithm. To see that weléh) be
[R(}”} — T(n) [ﬁf(” N 1)} (A1)

H
© (n) k(n) = 8. (A11)
whereT(n) is the(N + 1) x (N + 1) orthogonal matrix, which t(n)

annihilates the transpose of the input vectdf(n), by rotating SubstitutingS(n), defined in (10), into (A4) and using the ma-

itinto \/wR(n — 1). Thus, the matriX'(n) can be formed as trix inversion lemma, we can easily show that
the product ofV Givens rotation To begin the derivation, first

we do the premultiplication on both sides of (A1) with their S(n) = lS(n _1)- 1k(n)xH(n)S(n ~1) (A12)
respective Hermitian, yields w w

. ith
R o] || = [vaR -1 x1T) 5o i

kin) = L . Al3

e [ VRO ua W s A

. . . It is noticed, that matrixS(n) is in the form ofsquare root
SinceT(n) is an orthogonal matrix, (A2) may be expanded orm, e.g.S(n) = R—1(n)R~H(n), thus will be in absence

produce of process noise by using theholesky factorizationConse-
RH(H)R(TL) _ wRH(n ~ DR - 1)+ X(TL)XH(TL) (A3) quently, from (A12) and (A13), we can prove

By using the inversion matrix lemma, we get k(n) = S(n)x(n). (A14)
R™(n) R (n) = lR_l(n ~ DR " (n-1) In fact, (A1_2) and (A13) he_ave a very similar f_or_m as that in
w the conventional RLS algorithm. Finally, by defining\ax K

_R_l(n — Dz(n)z" (n)R="(n — 1)'

matrix
wtZ(n) (Ad)

) ) ) ) I'(n) = S(n)C (A15)
In (A4), the intermediate vectef(n) is designated as

~ R (n-1)x(n)
z(n) = NG 1

which is the key to parallel implementation of the inverse TI'(n)= —I'(n—1)— lk(n)xH(n)F(n -1). (Al6)
QRD-RLS approach and the scalar variatgle) is defined by w w

and after doing the right multiplication on both sides of (A12)
(A5) by C, we have

By premultiplying both sides of (A15) b€ and let®(n) =
t(n) = /142" (n)z(n). (A6) CHT(n), we have
Moreover, we may define a nelV x 1 vectorg(n) 1

o(n) = ~a(n—1) - %k(n)xH(n)cp(n ~1).  (AL7)
g(n) = R (n—1)z(n)
Vwt(n)

Using the definition of (A7), (A4) can be expressed as

(A7) The Kalman gain,k(n), I'(n), and ®(n) derived in this

appendix will be very useful for the development of the
constrained linearly inverse QRD-RLS algorithm.

R @R (1) = ~R™ (0= DR (n-1) ~ g(n)g" (n).

A8) APPENDIX B
Equation (A8) implies the existence of &% + 1) x (N + 1) In this appendix, to exploit the relationship of the results pre-
orthogonal matrixP(n) such that sented in this paper with the one discussed in .[17], we exte.nd
the result, based on the formulation addressed in [17], to derive
P(n) [w_l/2R_H(ﬂ - 1)} _ [R_H(ﬂ)} _ (Ag) the LS weight vector. It is noted, that in [17] only the residual
o g"(n) output signal is required in the minimum variance distortionless

response (MVDR) beamformer. It suggested that in the inverse
QR update procedure the pretransformation maltifor the
input data vector is required and it is invertible and well condi-
ioned. Where matrix’ composed by the original constrained
matrix C and the dummy constraints,,. The best choice for
P(n) [z(n)} _ [ o } (A10) the dummy constraint€, is that it should be an orthogonal

) basis for the null spac€, e.g.,C7C, = 0. It is noted that

It can also be shown th&(x) is a rotation matrix, which suc-
cessively annihilates the element of the veci6r), starting
from the top, by rotating them into the element at the botto
of the augment vector [12]
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such a “blocking matrix” also appeared in the generalized side-
MVDR BEAMFORMER ALGORITHM BASED ON INVERSE QR UPDATING [17]

lobe canceller. In [17], théV x N pretransformation matrix is
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TABLE ViII

defined as
(B1)

where0isaK x (N — K) zero matrix and is a(N — K) x
(N — K) identity matrix. Furthermore, the transformed trian-

gular matrix and input data vector are denoted as
R 7(n) =R (n) I (B2)
and
x(n) =T~ -x(n) (B3)

respectively. By using the definition of (B2) and (B3), it can be
easily verified that the intermediate vecir.) defined in (A5)
is consistent with that derived in [17] as follows:

:RfH(n — Dx(n)
Vw
R (n—-1)T) - (T"'x(n))
Vw
:RfH(n — Dx(n)
N .

z(n)

(B4)

®  Initialization R (0)=6""I, &§=small positive constant

R70)=R7©0)-T

® TForn=1.2,...,do
1. Pre-transformation for input data vector
() =T"-x(n)
2. Compute the intermediate vector z(n)
2(n) = R (n-DX(m) R (n-D)x(n)
Jw Jw
3. Evaluate the rotations that define P(») which annihilates vector

z(n) and compute the scalar variable #(n)

SRR

1
Update the lower triangular matrix R (1) and compute the
auxiliary matrix A(n) =R (#)C
[R‘” (n)]
g ()

® Compute LS weights vector, for i=1,...,K

P(n)l:w—llzR-H (n- 1):|

0T

R (n)a,(n)

hi = 5
(XQ]

That is the inverse Cholesky factor updating procedure is

the same as that proposed in this paper as listed in Tablg
Next, to extend the result of [17] and obtain the constrain
LS weight vector, the auxiliary matrix defined

stems are the most significant applications. For instance, we
ed to estimate the direction-of-arrival (DOA) and adjust the

in (14)weights of the adaptive beamformer simultaneously, in smart

is rewritten asA(n) [al(”)va%(”)v - ar(m)] With  ahtenna application. Also, in the space—time signal processing,

ai(n) = [ai(n),aix(n), ... ain(n)". In consequence, We ihe combined structure composed by beamformer and multiuser
may rewrite (9) as follows to obtain the LS weights vector i§etector with interference cancellation have to be considered
the MVDR beamformer at the same time. In such applications, the explicit LS weights
L R1(n)R~H(n)C R1(n)A(n) vector is required and becomes more significant. However, in
(n) = CFR-1(n)R~7(n)C  A7(n)A(n) the MVDR beamformer problem addressed in [17], only the
residual output signal is required, the LC-IQRD-RLS algorithm

f.

(BS)

If we considerK independent constraints and MVDR réSpPONS@eyeloped in this paper will be reduced to the result of [17].

i.e., f; = 1, we have
R™'(n)ai(n) , _ R~1(n)a;(n)

2 2
[l ()| [[ai ()|
fori=1,2,...,K.

(B6)

The complete MVDR beamformer algorithm similar to
Moonen’s expression is given in Table VII.

By comparing the results addressed above with our proposed
4]

method, we could say that the one derived in this paper is
more general LCMV formulation, based on the inverse QR
updating procedure, which can be applied to the LCMV spatial
beamformer but is not limited to the case of scalar MVDR
respons€ f; = 1). That is, it can be widely applied to more
general LCMV problems (in time-domain or space-domain),
while the MVDR beamformer algorithm, derived in [6] and
[17], is very suitable for those that require only thesteriori
residual signal, i.e.s(n) = x¥(n)h(n). To be more spe-

cific, the smart antenna and space-time signal processing "PS]

the code-division multiple-access (CDMA) communication
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