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Adaptive Linearly Constrained Inverse QRD-RLS
Beamforming Algorithm for Moving

Jammers Suppression
Shiunn-Jang Chern and Chung-Yao Chang

Abstract—In this paper, a general, linearly constrained (LC) re-
cursive least squares (RLS) array-beamforming algorithm, based
on an inverse QR decomposition, is developed for suppressing
the moving jammers, efficiently. In fact, by using the inverse QR
decomposition-recursive least squares (QRD-RLS) algorithm
approach, the lease-squares (LS) weight vector can be computed
without back substitution and is suitable to be implemented using
the systolic array to achieve fast convergence and good numerical
properties. The merits of this new constrained algorithm is verified
by evaluating the performance, in terms of the learning curve,
to investigate the convergence property and numerical efficiency,
and the output signal to interference and noise ratio. We show that
our proposed algorithm outperforms the conventional linearly
constrained LMS (LCLMS) algorithm, and the one using the fast
linear constrained RLS algorithm and its modified version.

Index Terms—Adaptive beamformer, interference and noise
ratio, inverse QRD-RLS algorithm, linearly constrained (LC),
moving jammers, signal-to-interference-and-noise-ratio (SINR),
systolic array.

I. INTRODUCTION

M ANY adaptive array beamforming algorithms, based on
linearly constraints, have been proposed for suppressing

undesired interference [1]–[4]. Moreover, these constrained ap-
proaches can be applied to wireless communication systems for
multiuser detection [19]. An array beamformer is a processor
used in conjunction with an array of sensors to provide a ver-
satile form of spatial filtering. The sensor array collects spa-
tial samples of propagation wave fields, which are processed by
the beamformer. In case that the desired signal and interfering
signal occupy the same temporal frequency band, the conven-
tional temporal filtering approach cannot be used to separate
signal from interference. In fact, the desired signal and jammers
usually originate from different spatial locations. This spatial
separation can be exploited to separate signals from interference
using a spatial filtering at the receiver. Such that, the adaptive
array system can be employed to automatically adjust its direc-
tional response to null the interferences or jammers and thus,
enhances the reception of the desired signal. They are two types
of adaptive array structures,viz., broadband array structure and
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the narrowband array structure. In this paper, the narrowband
array structure is considered for moving jammers suppression.

The linearly constrained minimum-variance (LCMV) beam-
former is considered to be one of the most popular approaches
for suppressing the undesired interference [5], [6]. The Frost’s
beamforming algorithm [1], can be viewed as an adaptive
implementation of the LCMV beamformer. However, under
certain circumstances, the conventional Frost’s beamforming
algorithm may have some problem associated with the per-
formance degradation in multiple jammers environment. To
circumvent this drawback, in [3] the adaptive transformed do-
main normalized LMS algorithm with discrete cosine transform
(DCT) and discrete Harley transform (DHT) for broadband
adaptive array structure were proposed to improve the nulling
capability as well as convergence speed. Also, in [4] the lin-
early constrained robust fast least square (FLS) beamforming
algorithm was suggested to achieve better performance for
broadband beamformer.

It is known that, in general, the recursive least squares
(RLS) algorithm offers better convergence rate, steady-state
means-square error (MSE), and parameter tracking capability
over the adaptive leaset mean square (LMS) based algorithm .
But, the widespread acceptance of RLS filters has been impeded
by a sometime unacceptable numerical performance in limited
precision environments. This degradation of performance is
especially noticeable for the family of techniques collectively
known as “fast” RLS filters [7]–[9]. To overcome this problem,
a well known numerical stable RLS algorithm, which is
called the QR-decomposition RLS (QRD-RLS) algorithm was
proposed in [5], [10], and [11]. Basically, it computes the QR
decomposition of the input data matrix usingGivens rotation
and solving the LS weight vector by the back substitution. This,
in turn, causes the numerical dynamic range of the transformed
computational problem to be reduced. Also, it has the benefit
of using the QR-based approaches, that is, the rotation-based
computations are easily mapped onto systolic array structures
for a parallel implementation with VLSI technology [5], [9].
However, in some practical applications if the least-squares
(LS) weight vector is desired in each of iteration then back
substitution steps must be performed accordingly . Due to the
fact that back substitution is a costly operation to be performed
in array structure, in such circumstance the so-called inverse
QRD-RLS (IQRD-RLS) [12], [13] algorithm was proposed,
where the LS weight vector can be computed without back
substitution.
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Fig. 1. Configuration of linearly constrained adaptive-array beamformer.

In this paper, a general linearly constrained adaptive beam-
former based on the inverse IQRD-RLS algorithm is developed
with an adaptive narrowband array structure. It is notice that the
proposed IQRD-RLS beamforming algorithm can be viewed as
a general formulation or the extension of the one discussed in
[17], and is discussed in Appendix B as a reference. The differ-
ence of the IQRD-RLS algorithm from the FLS algorithm [4]
is that the adaptation gain or Kalman gain is evaluated using
Givens rotation(QR decomposition) [12], [13]. This results in
having better numerical accuracy and stable steady-state MSE
and better capability to null multiple undesired interferences
than the RLS or FLS algorithm. In this paper, we will first de-
rive the adaptive linearly constrained IQRD-RLS beamforming
algorithm and discuss its rationale. After that, computer simu-
lation is carried out to verify the robustness of the method pre-
sented with respect to the moving jammers suppression capa-
bility.

II. L INEARLY CONSTRAINED INVERSE QRD-RLS
BEAMFORMER

In this section, the optimal LS solution of the linearly con-
strained beamformer, based on the IQRD-RLS algorithm [12],
[13] is derived with narrowband array structure. Also, its adap-
tive implementation algorithm is developed and discussed in
what follows. First, we will review the formulation of antenna
array.

A. Formulation of Antenna Array

The basic operation of the adaptive antenna array is usually
described in terms of a receiving system steering a null, that is,
a reduction in sensitivity in a certain position, toward a source
of interference. It consists of a number of antenna elements cou-
pled together via some form of amplitude control and phase
shifting network to form a single output. The amplitude and
phase control can be regarded as a set of complex weights, as
illustrated in Fig. 1.

To start our derivation, let us consider a uniformly linear array
(ULA) and a wavefront, generated by a desired source of wave-
length , propagating in an element array of sensors from a
direction off the array boresight. Now, taking the first ele-
ment in the array as the phase reference and with equal array
spacing , the relative phase shift of the received signal at the

th element can be expressed as

(1)

Moreover, we assume that the spacing between array elements
is set to be , the array response vector of this-antenna
ULA can be denoted by

(2)

Thus, we choose toward the direction of arrival (DOA) of
desired source signal and suitably adjust the weights of adaptive
array; the array will pass the desired source signal from direction

and steer nulls toward interference sources located at, for
. It can be shown that an -element array has

degrees of freedom giving up to independent pattern
nulls. So it has better performance if the array has more antenna
elements.

B. The Optimal Solution of the LC-IQRD-RLS Beamformer

It is known that the principle of a LCMV beamformer
[5] is to minimize the powers of background noise and the
interference at the linear-array output, while maintaining
a chosen frequency response in the look direction. The
vector of sampled signals at the time indexis denoted by

and the corresponding
vector of the weights appearing at each tap is designated as

. Where the superscript
is denoted as the Hermitian operation andis the number of
array elements. The output signal is given by

(3)
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In the method of exponentially weighted least square, we choose
the weights at time , so as to minimize the cost function that
consists of the sum of weighted output power

(4)

where parameter, , is an exponential
weighting factor or forgetting factor that controls the
speed of convergence and tracking capability of the al-
gorithm. For convenience, let us denote a data
matrix, in terms of snapshots , which
is defined by , with

In consequence, we
may rewrite (4) in a matrix form

(5)

Also, diag is a diag-
onal matrix. In the linearly constraint problem, the constraints
of the weights are introduced by a linear system

(6)

In (6), is a constraint matrix, con-
structed by array steering vectors, , and

is the -element response column vector.
Therefore, the constrained optimization problem becomes to
minimize the cost function defined in (5), subject to the con-
straints defined in (6).

It is known that in the conventional QRD-RLS algorithm, an
orthogonal matrix is employed to do the triangular factor-
ization of the data matrix, , by Givens rotation

(7)

where is an upper triangular matrix, and is the
null matrix. Since orthogonal matrix is length pre-

serving, using the result of (7), the cost function can be rewritten
as

(8)

where denoted the Euclidean norm of . Now, the con-
strained optimization problem becomes to minimize (8), subject
to the constraints defined in (6). Consequently, proceed in a sim-
ilar way as in [14], we may derive the constrained optimal so-
lution of the LS weight vector, via Lagrange multiplier method
based on theIQRD-RLSnotation, that is

(9)
Based on (9), in Section II-C, the recursive implementation
of the optimum linearly constrained LS solution, using the
IQRD-RLS algorithms, can be developed.

C. Recursive Implementation of LC-IQRD-RLS Algorithm

To derive the recursive equation of (9), we define a new
matrix

(10)

and its inverse matrix to be

(11)

In fact, it can be easily shown that matrix is equivalent
to the following definition:

(12)

Also, following the terminology in the Kalman filtering, matrix
is referred to as a “correlation matrix” of the exponen-

tial weighted sensor outputs averaged oversnapshots, while its
inverse is denoted by when-
ever it exists. For convenience, we define and

, in consequence, (9) can be
expressed as

(13)

Here (13) can be viewed as the LCMV beamformer based on
the inverse QR decomposition.

In what follows, a recursive implementation of (13) will be
derived based on theinverse Cholesky factor . In fact,
in (13) both and are related to theinverse Cholesky
factor, some of the useful parameters and alternative recursive
forms of and are derived and discussed in Ap-
pendix A. First, we recall from (A-1), is an unitary ma-
trix, which is used for updating the Cholesky factor to

, and can be shown to be equivalent to , where is
an orthogonal matrix used to update from
[see (A9)]. The key point is to derive a recursive formulation
for implementing (13), and the parameters involved in the re-
cursive equation should be related to the scalar parameter,,
and vector (defined in (A6) and (A7), respectively) while
updating theinverse Cholesky factor from .
To simplify matters, we define the auxiliary matrix

(14)

and the row vector , such that
and , respected. From the

definition of , it follows that

(15)

In consequence, we may have the following related equation:

(16)
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By definition and using (A8), and can be expressed
in recursive forms

(17)

and

(18)

or with , we have

(19)

Applying the inversion matrix lemma to (19), we have the re-
cursive equation of matrix

(20)

where is defined by

(21)

It should be noted that, by definition of (18), , e.g.,
, and in consequence of defined in (20),

both are in asquare rootform, and is well known that it will be in
the absence of process noise by using theCholesky factorizaton.
Also, based on (20) and (21) we can show

(22)

Here, (22) is useful for deriving the recursive implementation of
(13).

Finally, to apply the recursive equations defined in (17) and
(20)–(13) and after some simplification, we have the recursive
implementation of (13) or the adaptive linearly constrained in-
verse QRD-RLS (LC-IQRD-RLS) beamforming algorithm

(23a)

Moreover, with the definition of (A5) and (A7), (23a) can be
further simplified

(23b)

with

(24)

TABLE I
SUMMARY OF THE ADAPTIVE LC-IQRD-RLS BEAMFORMING ALGORITHM

and

(25)

In (25), can be viewed as thea priori output of
beamformer. This completes our derivation for the adaptive
linearly constrained inverse QRD-RLS beamforming algo-
rithm. For convenience, a complete procedure of implementing
the linearly constrained inverse QRD-RLS (LC-IQRD-RLS)
algorithm is summarized in Table I, as reference. It should be
noted that in Table I, the adaptation gain , and the auxiliary
vector, , are related to vector and scalar variable ,
which are obtained while we compute theinverse Cholesky
factor from via Givens rotation.

Since it is known that the QR decomposition or the inverse
QR decomposition viaGivens rotationhas more robust stability
characteristics, therefore, we can expect that the proposed algo-
rithm will have better numerical stability and accuracy as com-
paring with the conventional fast RLS family. Moreover, for im-
plementation in Table I the initial value of is propor-
tional to , and from [5] the value of should be chosen suit-
ably small compared to , where is the average power
of input data. In our case, in general, the input data will be higher
correlated when the jammers are more closely located. In such
cases the value ofhas to be chosen slightly larger than the one
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Fig. 2. Systolic array for inverse updating beamforming algorithm.

suggested in [5]. However, for sufficient large data lengths, the
exact value of will be less significant.

III. T HE SYSTOLIC ARRAY IMPLEMENTATION OF

LC-IQRD-RLS ALGORITHM

In the conventional RLS algorithm, calculation of Kalman
gain required the inversion of the correlation matrix of input
vector . If the data matrix is in ill condition, or in the worst
case has a rank less than the number of the weight vector ele-
ments, i.e., , the conventional RLS algorithm will rapidly be-
come numerically unstable as the inversion of correlation ma-
trix becomes impossible. Moreover, it still has a shortcoming,
namely, they generally do not lend themselves to efficient hard-
ware implementation.

It is well known that the QR decomposition has the advan-
tages of parallel execution and the computational power can
be reached by connecting general purposed digital signal pro-
cessing (DSP) device. As described earlier, using the QRD-RLS
approach, the optimal weight vector is obtained via back sub-
stitution. Unfortunately, pipelining of the two steps (triangular
update and back substitution) on a triangular array seems im-
possible because of its opposite executive direction. However,
as depicted in Fig. 2, using the inverse QRD-RLS based method
proposed in this paper, this disadvantage can be avoided. It can
be mapped onto the systolic array structures for a parallel im-
plementation with VLSI technology. As illustrated in Fig. 2,
each processing cell, used for inverse updating the beamforming
array, comprises three types of cells, whose functions are de-
scribed in Fig. 3.

Fig. 3. Processing cells required for the inverse updating the beamforming
array.

Basically, this array is made up of three sections: The trian-
gular array in the right-upper part in Fig. 2 stores and updates
the inverse Cholesky factor. Each element of the triangular part
of the array has an associated internal state, which is equiva-
lent to the corresponding element of the inverse Cholesky factor

. And the square cells in the left-upper part generate the ro-
tation parameters. Finally, the row in the lower part updates the
intermediate parameters and computes the weight vector. The
systolic array has a latency of, symbol periods arises from the
requirement to clock the data through the processing elements,
but provided the model order is not too high, the delay can be
tolerated in this application. It is noted that division operator,
in the pipelined implementing of the proposed algorithm devel-
oped in this paper, is avoided. All the intermediate parameters
and inverse matrix have their corresponding recursive form.

An advantage of the systolic array over than other architec-
tures is that the individual processing element computational
complexity does not grow with increasing order. The larger
filter orders of implementation proposed in this paper, which
is using systolic array, can be accommodated than with con-
temporary algorithms such as the standard RLS algorithm has a
computational complexity of . Whenever multiple con-
straints with steering vectors are considered, it is sufficient to
replicate the row in the lower part to update the weight vector.
Conversely, only one triangular array is required irrespective of
the number of look directions. Also, by using the systolic array
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Fig. 4. Power spectrum of look direction desired signal.

structure described in Figs. 2 and 3, the adaptive LC-IQRD-RLS
beamforming algorithm can be implemented in real-time appli-
cation, efficiently.

IV. COMPUTERSIMULATION RESULTS

In this section, computer simulations are carried out to vali-
date and investigate the performance of the presented method.
We assume that the received signal in each sensor consists of a
desired source signal buried in white Gaussian noise and three
directional interferences (or jammers) incident at angles, ,
and , respectively. For convenience, the look direction of the
desired source signal is chosen to be . Also, the desired
source signal is generated using the AR(2) model, that is

(26)

Here the coefficients of AR(2) model are set to be
, and the variance of white

process is chosen to be to have unit variance
of desired source signal , e.g., . The power spec-
trum of desired source signal, from look direction, is illustrated
in Fig. 4.

Next, in the following simulations, we assume that the linear
array has seven sensors and the analog frequencies of
corresponding jammers are chosen to be 600, 700, and 800 Hz,
also, the sampling frequency is set to be 2000 Hz. The corre-
sponding incident angles of these three jammers are25 , 45 ,
and 50 . For further discussion, we define , ,
as the corresponding jammer-to-noise ratios and assume that

. To see the effect due to eigenvalue
spread two sets of jammer’s power ratio (JPR), e.g., the ratio be-
tween and , that is, and 100,
are considered.

Since in the adaptive LCLMS beamforming algorithm (or the
Frost’s algorithm) the upper bound of the step-size to assure
the convergence is . For convenience, the step size
with one-half of the upper bound is selected, and two specific

TABLE II
THE VALUES OF STEP SIZE FOR VARIED JPR

sets of values of the step size are listed in Table II for computer
simulation.

To investigate the performance of the presented method, first,
we will examine the capability of interference rejection and
the results are compared with the conventional Frost’s linear
constrained least mean square (LCLMS) beamforming algo-
rithm and the one discussed in [4], using the linearly constrained
fast LS (LCFLS) and robust FLS (LCRFLS) beamforming al-
gorithms. In general, since the averaged power of jammer is
much larger than the desired source signal, the SNR is set to
0 dB. In the first case, three jammers with equal power, e.g.,

dB, and incident angels,25 ,
45 , and 50, are considered. The results, in terms of nulling
capability, are given in Fig. 5 for different methods with 200
iterations, which is the average of 500 independent runs. As
observed from Fig. 5, the presented method performs superior
to the LCFLS and the LCRFLS algorithms, and much better
than the conventional Frost’s algorithm. In the second case, for

dB, and dB, similar results
are observed in Fig. 6. Also, for comparison, the results of these
two cases are listed in Table III.

As observed from Table III, the performance using the
adaptive LCLMS beamforming algorithm is affected by the
eigenvalue spread as in case 2, and the performance becomes
worse, while the other algorithms perform quite well. As indi-
cated in [4], in this case, the adaptive LCRFLS beamforming
algorithm has 2–8 dB improvement over the adaptive LCFLS
beamforming algorithm, due to the effect of introducing a
correction term. Although, both adaptive LCFLS and LCRFLS
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Fig. 5. Beam patterns of case 1 with different algorithms after 200 iterations (500 runs).

Fig. 6. Beam patterns of case 2 with different algorithms after 200 iterations (500 runs).

beamforming algorithms introduced reasonable deep nulls
in the incident angels of 45and 50 . For smaller power
jammer incident from 25 , 20 dB and 13 dB decays are
observed, compared with case 1, for the adaptive LCFLS and
LCRFLS algorithms, respectively. However, in these two cases,
the presented method performs quite well and quite close to
the results of MVDR. Therefore, we may conclude that the
adaptive LC-IQRD algorithm, proposed in this paper, has the
best nulling capability for rejecting jammers and separating
adjacent jammers compared to the others. It is of interested to
point out that the results described above are obtained using the
Pentium III 550 MHz (with 256-MB RAM). However, if PC of

Pentium I 166 MMX (with 32 MB) is employed, the adaptive
LCFLS algorithm will diverge as indicated in [14].

Next, we would like to examine the convergence property and
the numerical stability of the presented method. To see the con-
vergence property, in terms of learning curves, case 2 is consid-
ered, and the results are given in Fig. 7, where the minimal MSE
is given by (0 dB). From Fig. 7, we learn that
the adaptive LCLMS algorithm converges slowly approaching
the minimal MSE after 3000 iterations. Although both the adap-
tive LCFLS and LCRFLS algorithms could converge faster, they
will diverge after 1500 and 2000 iterations, respectively, due to
the instability of updating the Kalman gain during adaptation
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TABLE III
COMPARISON OFNULLING CAPABILITY FOR DIFFERENTMETHODS

Fig. 7. Learning curves for case 2 after 3000 iterations (using 500 runs).

processes. However, by using the adaptive LC-IQRD algorithm,
proposed in this paper, fast convergence and better numerical
stability can be achieved.

Finally, it is of interest to investigate the tracking capability
due to moving jammers. To do so, we consider the case with
three moving jammers, which may occur in wireless communi-
cation environment, with their azimuthal trajectories being de-
noted by

(27)

where is the snapshot time index. To be more specific, the
value of output signal to interference and noise ratio (SINR) can
be evaluated based on the following definition: [5]

SINR (28)

where is the averaged power of target signal,is the steering
vector in the constrained matrix, and is the covariance
matrix of interferences (jammers) and noise. Also, the optimal
SINR is defined by [5]

SINR (29)

First, let us examine the results shown in Fig. 8, with the pa-
rameters as in case 1 except that SNR dB, when the jam-
mers are still. From Fig. 8, we learn that the proposed adap-
tive LC-IQRD algorithm outperforms the adaptive LCLMS al-
gorithm and the one using the LC-FLS algorithm and its mod-
ified version, e.g., the LC-RFLS algorithm. As expected, both
adaptive LC-RFLS and LC-IQRD algorithms could converge to
the optimal output SINR, e.g., 19.93 dB, faster. However, it di-
verges after long-term adaptation due to the instability as indi-
cated in Fig. 7. While the LC-LMS algorithm may not be able
to approach the desired value, after 200 snapshots, it could only
achieve its best SINR value at about 16.5 dB.

Next, for the case of moving jammers, we set the param-
eters to be the same as in case 1, and in this case, we have
the desired output to be 5.57 dB. As shown
in Fig. 9, the conventional adaptive LCLMS algorithm (or
Frost’s algorithm) could not track the moving jammers, prop-
erly. In consequence, the performance of LCLMS algorithm
will degrade significantly because of its slow tracking capa-
bility. Therefore, we may conclude that the presented method,
with the LCIQRD algorithm, is more robust than the existing
methods, particularly, when real time implementation is re-
quired at high data bandwidths.
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Fig. 8. The output SINR for case 1 with stationary jammers.

Fig. 9. The output SINR with case 1 for moving jammers.

For convenience, in Table IV the comparison of the pro-
posed algorithm with the conventional Frost’s algorithm and
the FLS and robust FLS algorithms [4], in terms of numerical
stability and computation efficiency, are given. It is known
that the family of the “fast ” least squares has serious nu-
merical instability in limited precision environment, and has
time shifting relationship between the tapped-delay line below
each sensor of beamformer. But this is not the case when
narrowband beamformer structure is employed. The sensor
output is simply weighted and summed to compute the array
output. Consequently, it will reduce the computational com-
plexity, significantly. In this case, the Kalman gain of FLS

can be evaluated using a conventional RLS procedure with a
complexity proportional to . Since in our proposed method,
the QR decomposition is employed and is very efficient for
evaluating the Kalman gain and the related parameters. Thus,
with similar complexity as the LCFLS algorithm, the proposed
method has better numerical stability.

V. CONCLUSION

In this paper, a generalized adaptive linearly constrained
beamformer based on the inverse QRD-RLS algorithm has
been derived. In fact, it can be viewed as an extention of the
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TABLE IV
COMPARISON OFFOUR CONSTRAINED ALGORITHMS IN NARROWBAND BEAMFORMER

TABLE V
COMPLEXITIES COMPARISON OFFOUR ALGORITHMS IN DIFFERENTUPDATE PROCEDURES

one developed in [17] (see Appendix B). To document the
advantage of our proposed method the performance compar-
ison of the learning curves and nulling capability for different
methods are evaluated. The computer results have verified the
merit of the proposed method. As observed from the results
shown in Section IV, the proposed method could be used to
achieve the desired value of SINR and having better tracking
capability as compared to the conventional LMS and fast
RLS algorithms. Also, the performance, in terms of numerical
stability and computation efficiency, has been shown to be su-
perior to other conventional algorithms. Moreover, by using the
systolic array structures described in Figs. 2 and 3, the adaptive
LC-IQRD-RLS beamforming algorithm can be implemented
in real time application, efficiently. Thus, we concluded that
the overall performance, in terms of computation efficiency,
convergence property, and nulling capability of the presented
method, did perform over the linearly constrained FLS and its
modified version.

Moreover, as discussed in [16], the direct QR algorithm may
suffer the accumulative round off error to give rise to numerical
problems and the simple back substitution needs oper-
ations. On the other hand, it has been shown that in the inverse
QRD-RLS algorithm, the recursive updating of the triangular
matrix requires only operations. In [18], a detail com-
parison of implementing the associated intermediate cells of in-
verse QRD-RLS algorithm and the fast RLS algorithm is given.
Consequently, we can conclude that the inverse QRD algorithm
has the advantages of numerical stability and complexities than
the QRD algorithm.

TABLE VI
COMPUTATIONAL EXPENSE OF THEEXISTING ALGORITHMS COMPARED WITH

THE LC-IQRD-RLS ALGORITHM (100%)

To see the merits of the LC-IQRD-RLS algorithm, the com-
putational expense is calculated. The complexities in terms of
multiplication and addition operators in each stage of the rela-
tive four algorithms are compared. Complexities of three stages
are concerned, which included the Kalman gain stage, the inter-
mediate constrained matrix updating stage, and the updating LS
weights vector stage. For convenience, the number of multipli-
cation and addition operators in each stage and overall complex-
ities of four algorithms are listed in Table V. Also, to be more
specific, the computation expense with and is
given in Table VI. From Table VI, we learn that the proposed
algorithm is more computational efficient than other existing al-
gorithms, except the one using the LCLMS algorithm proposed
by Frost [1].

APPENDIX A

In this appendix, some of the equations during the access of
updating the inverse Cholesky factor in the inverse QRD-RLS

Authorized licensed use limited to: Tamkang Univ.. Downloaded on March 28,2023 at 03:21:12 UTC from IEEE Xplore.  Restrictions apply. 



1148 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 50, NO. 8, AUGUST 2002

algorithm that are very useful for deriving the linearly con-
strained inverse QRD-RLS beamforming algorithm, are
discussed. From [12], we know that the upper triangular matrix

can be updated in a recursive form

(A1)

where is the orthogonal matrix, which
annihilates the transpose of the input vector, , by rotating
it into . Thus, the matrix can be formed as
the product of Givens rotation. To begin the derivation, first
we do the premultiplication on both sides of (A1) with their
respective Hermitian, yields

(A2)

Since is an orthogonal matrix, (A2) may be expanded to
produce

(A3)

By using the inversion matrix lemma, we get

(A4)

In (A4), the intermediate vector is designated as

(A5)

which is the key to parallel implementation of the inverse
QRD-RLS approach and the scalar variable is defined by

(A6)

Moreover, we may define a new vector

(A7)

Using the definition of (A7), (A4) can be expressed as

(A8)
Equation (A8) implies the existence of an
orthogonal matrix such that

(A9)

It can also be shown that is a rotation matrix, which suc-
cessively annihilates the element of the vector , starting
from the top, by rotating them into the element at the bottom
of the augment vector [12]

(A10)

It should be noted that both and are computed, using
theGivens rotation, when is updated from .
Moreover, it is of interest to point out that the vector scaled
by can be viewed as the adaptation or Kalman gain of the
inverse QRD-RLS algorithm. To see that we let be

(A11)

Substituting , defined in (10), into (A4) and using the ma-
trix inversion lemma, we can easily show that

(A12)

with

(A13)

It is noticed, that matrix is in the form ofsquare root
form, e.g., , thus will be in absence
of process noise by using theCholesky factorization. Conse-
quently, from (A12) and (A13), we can prove

(A14)

In fact, (A12) and (A13) have a very similar form as that in
the conventional RLS algorithm. Finally, by defining a
matrix

(A15)

and after doing the right multiplication on both sides of (A12)
by , we have

(A16)

By premultiplying both sides of (A15) by and let
, we have

(A17)

The Kalman gain, , , and derived in this
appendix will be very useful for the development of the
constrained linearly inverse QRD-RLS algorithm.

APPENDIX B

In this appendix, to exploit the relationship of the results pre-
sented in this paper with the one discussed in [17], we extend
the result, based on the formulation addressed in [17], to derive
the LS weight vector. It is noted, that in [17] only the residual
output signal is required in the minimum variance distortionless
response (MVDR) beamformer. It suggested that in the inverse
QR update procedure the pretransformation matrixfor the
input data vector is required and it is invertible and well condi-
tioned. Where matrix composed by the original constrained
matrix and the dummy constraints . The best choice for
the dummy constraints is that it should be an orthogonal
basis for the null space , e.g., . It is noted that
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such a “blocking matrix” also appeared in the generalized side-
lobe canceller. In [17], the pretransformation matrix is
defined as

... (B1)

where is a zero matrix and is a
identity matrix. Furthermore, the transformed trian-

gular matrix and input data vector are denoted as

(B2)

and

(B3)

respectively. By using the definition of (B2) and (B3), it can be
easily verified that the intermediate vector defined in (A5)
is consistent with that derived in [17] as follows:

(B4)

That is the inverse Cholesky factor updating procedure is
the same as that proposed in this paper as listed in Table I.
Next, to extend the result of [17] and obtain the constrained
LS weight vector, the auxiliary matrix defined in (14)
is rewritten as with

. In consequence, we
may rewrite (9) as follows to obtain the LS weights vector in
the MVDR beamformer

(B5)

If we consider independent constraints and MVDR response,
i.e., , we have

for (B6)

The complete MVDR beamformer algorithm similar to
Moonen’s expression is given in Table VII.

By comparing the results addressed above with our proposed
method, we could say that the one derived in this paper is a
more general LCMV formulation, based on the inverse QR
updating procedure, which can be applied to the LCMV spatial
beamformer but is not limited to the case of scalar MVDR
response . That is, it can be widely applied to more
general LCMV problems (in time-domain or space-domain),
while the MVDR beamformer algorithm, derived in [6] and
[17], is very suitable for those that require only theposteriori
residual signal, i.e., . To be more spe-
cific, the smart antenna and space-time signal processing in
the code-division multiple-access (CDMA) communication

TABLE VII
MVDR BEAMFORMERALGORITHM BASED ONINVERSEQR UPDATING [17]

systems are the most significant applications. For instance, we
need to estimate the direction-of-arrival (DOA) and adjust the
weights of the adaptive beamformer simultaneously, in smart
antenna application. Also, in the space–time signal processing,
the combined structure composed by beamformer and multiuser
detector with interference cancellation have to be considered
at the same time. In such applications, the explicit LS weights
vector is required and becomes more significant. However, in
the MVDR beamformer problem addressed in [17], only the
residual output signal is required, the LC-IQRD-RLS algorithm
developed in this paper will be reduced to the result of [17].
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